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The Ising model on the tetrahedron lattice I. An extended 
susceptibility series 

J Ho-Ting-Hun and J Oitmaa 
School of Physics, The University of New South Wales, Kensington, NSW 2033, Australia 

Received 18 June 1975 

Abstract. We have calculated the first 16 terms of the series expansion for the high-tempera- 
ture susceptibility of the Ising model for a lattice made up of the B sites of the crystobalite 
or spinel structures (the ‘tetrahedron’ lattice). By means of a transformation technique 
which allows the enumeration of graphs to be carried out on the simpler diamond lattice 
we have added six new terms to previously published results. We estimate that the critical 
temperature is given by 

U, = 0~23300f040001 

and that the exponent y is 

’/ = 1 ~ 2 5 0 ~ 0 ~ 0 0 1 ,  

a result which gives further confirmation of the universality hypothesis. 

1. Introduction 

It is generally believed that near the critical point the high-temperature zero-field 
susceptibility of the Ising model has the asymptotic form 

K(T) - C(T-T,)-Y, T 4  T: 

The high-temperature susceptibility can be expanded in the form 

r =  1 

where U = tanh(J/kT), J being the exchange constant. It is well known that the coeffi- 
cients a, can be related to a graph counting problem and can be evaluated exactly. If 
the coefficients up to and including r = N are known we will refer to this as an N-term 
series. 

Evidence from such high-temperature series for the spin $ nearest-neighbour Ising 
model on the face-centred cubic, body-centred cubic and simple cubic lattices suggests 
that y = 1.25 exactly for all three lattices. The latest results are due to Sykes et a1 
(1972). 

Early results of this type led the way to the ‘universality’ hypothesis (Kadanoff 1970, 
Griffiths 1970), according to which all critical exponents should be independent of the 
lattice structure for a given dimension. 

High-temperature series have also been derived for a number of less common three- 
dimensional lattices. In table 1 we give a summary of such work. We only consider the 
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Table 1. Summary of published high-temperature susceptibility series for the spin 4 nearest- 
neighbour king model on three-dimensional lattices. 

Lattice Author(s) Number of terms 

Simple cubic 
Face-centred cubic 
Body-centred cubic 
Diamond 
Cry stobalite } 
B-site spinel 
Hydrogen peroxide 
Hyper-triangular 
Octahedral 

Sykes et al(1972) 
Rapaport (1974) 
Sykes et al(1972) 
Gaunt and Sykes (1973) 
Betts and Ditzian (1968) 
Lambeth et a1 (1974) 
Leu et al(l969) 
Leu et al(1969) 
Oitmaa and Elliott (1970) 

17 
13 
15 
22 
10 
10 
27 
13 
9 

spin 3 nearest-neighbour case. Although these series are generally less regular in 
behaviour than the three common cubic lattices, the results are in all cases quite con- 
sistent with the hypothesis y = 1.25. Ofcourse the critical temperature T,  (or U,) depends 
on the lattice structure and the susceptibility series provide the best means of estimating 
U, for a particular lattice structure. 

Betts and Ditzian (1968) have derived high-temperature series for the specific heat 
and susceptibility for a spin 3 nearest-neighbour Ising model on a particular lattice which 
they called the crystobalite lattice, This lattice is illustrated in figure 1-it consists of 
regular tetrahedra joined corner to corner. The mineral crystobalite is a form of SiO, 
in which the oxygen atoms occupy the sites of the lattice and the silicon atoms the 
centres of the tetrahedra. There are a number of alloys of the form AB, which also have 
this structure. Jasnow and Moore (1968) and Lambeth et al (1974) have also derived 
high-temperature susceptibility series for this lattice, which they call the B-site spinel 
lattice, since it is the lattice occupied by the magnetic B ions in a number of spinel 
structure ferromagnetic insulators with the general formula AB,X, . Thus this lattice, 
which for simplicity we will call the ‘tetrahedron lattice’ is of interest not only from a 
purely theoretical point of view but also as the structure of a number of real ferro- 
magnetic materials. 

There is a great deal of similarity between the tetrahedron lattice and the diamond 
lattice-in fact the centres of the tetrahedra lie on the diamond lattice. Using this 
property Gibberd (1970) was able to extend the specific heat series derived initially by 
Betts and Ditzian from 11 terms to 19. This was done by using a transformation tech- 
nique and the existing free energy series for the diamond lattice. Unfortunately specific 
heat series are invariably much more irregular than susceptibility series and Gibberd 
was unable to obtain consistent estimates of either the critical temperature U, or 
exponent a. 

Gibberd’s transformation method, in its original form, is applicable only to the 
zero-field free energy. We have been able to generalize the method to the calculation 
of the zero-field susceptibility. In this way we have been able to extend the 10-term 
susceptibility series of Betts and Ditzian (1968) and Lambeth et a1 (1974) to 16 terms. 
With the additional terms we are able to obtain much more accurate estimates for the 
critical temperature and the exponent y. We estimate that y = 1.250+0.001, a result 
in convincing agreement with the universality hypothesis. In the process we have 
obtained exact agreement with the terms given by Lambeth, Lee and Stanley and have 
confirmed a small error in the tenth coefficient of Betts and Ditzian. 
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In 9 2 of the paper we will discuss the transformation technique and give the result- 
ing series coefficients. In $3 we present the results of the series analysis, based on 
standard ratio and Pade approximant techniques. In $ 4  we present our conclusions 
and suggest areas for further work. 

2. Derivation of series 

We consider the spin 3 nearest-neighbour Ising model on the tetrahedron lattice shown 
in figure 1. The Hamiltonian is 

2 = -J a i o j - m H c o i  
( i J )  i 

where the symbols have the usual meaning. The zero-field dimensionless susceptibility 
per spin is 

and the partition function is 

where b = l /kT,  K = BJ, U = tanh K, and h = PmH. The summation is over all spin 
configurations, the first product over all nearest-neighbour pairs of spins, and the 
second product over all spins. 

Figure 1. The tetrahedron lattice. This is the lattice made up of the B sites in either the 
crystobalite structure AB, or the spinel structure AB,X,. 

From the product ll,ij, we explicitly multiply out the terms arising from a single 
tetrahedron, as described by Gibberd (1970). This yields for the partition function 

Z = (cosh K ) 3 N ( l  + 4v3 + 3~~)~'' 1 n exp(hok) n 
(4 k tetrahedra 
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where 
A = (U+ 2uz + 2 u 3 +  2u4+ d ) ( 1  +4u3 + 3u4)- 1 

B = ( 3 ~ ~ + 4 u ~ + t . ~ ) ( 1 + 4 ~ ~ + 3 0 ~ ) - ~  ( 5 )  

and the second product runs over the N/2 tetrahedra which make up the lattice of N 
sites. 

The product over the set of N/2 tetrahedra can be expanded and the various terms 
associated with graphs on the lattice in the usual way (see Domb 1974 for a general 
description of this procedure). These graphs consist of single bonds (weight A )  and 
'crossed bonds' (ie 4 unpaired spins, weight B). For the zero-field susceptibility the 
allowed graphs must contain exactly two odd vertices. The resulting expression is 

j (  = 1 + 2 1  CGAmBn (6) 
( G )  

where {G} is the set of all graphs with,two odd vertices, C, is the weak lattice constant 
of graph G, and m, n are the numbers of single and crossed bonds in graph G respectively. 

It is possible to set up a correspondence between graphs on the tetrahedron lattice 
and graphs on the diamond lattice formed by the centres of all tetrahedra. The ad- 
vantage of this procedure is that it is much simpler to enumerate graphs on the diamond 
lattice. All graphs joining a particular set of tetrahedra will correspond to a particular 
graph, which we call the dual graph, joining the corresponding sites on the diamond 
lattice. Some examples are given in figure 2. 

Tetrahedron lattice Dual graph 
graph and weight 

A 
- (9A2) 

Figure 2. The correspondence between graphs on the tetrahedron lattice with dual graphs 
and their weights on the diamond lattice. 

In order for the correspondence to be valid it is necessary to assign weights to the 
different vertex types for the dual graphs. The vertex types and corresponding weights 
are shown in figure 3. The weight for a complete graph is just the product of the vertex 
weights. There is one complication, namely, that when the two odd vertices of the dual 
graph are on nearest-neighbour sites the weight must be modified by subtracting from 
it the weight of the associated polygon, as shown in figure 4. 
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Figure 3. Vertex types and weights (in parentheses) for dual graphs 

Tetrahedron lattice 
graph Dual graph 

Weight = 8A6 = 9A6 - A 6  

Figure 4. An illustration of the weight correction for dual graphs with odd vertices which 
are nearest neighbours. 

It is then necessary to enumerate all the dual graphs which correspond to configura- 
tions with two unpaired spins. This was done independently by each of us. There are 
many topological types and we display these in the appendix. The computation of the 
lattice constants for connected graphs has been carried out by computer while for dis- 
connected graphs algebraic techniques, with various checks, have been used. The 
series we obtain is 

x = 1 + 6A + 18A2 + 54A3 + 162A4 +486A5 + 1446A6 + 4194A' 

+ 12234A8 + 35442A9 + 102522A1° +294480A1 + 8471 16.4" 

+2427840A13 +6957600A14+ 19878408A15+56810148A16+ . . . 
+ B( 12.4' + 72A6 + 348A7 + 1440A8 + 5640A9 + 20412A10 + 71028A 

+239844A12 +792480A13+2552212A14+ . . . )+B2(6A7 +54A8 

+414A9+2106A10+10038A11+41506A12+ . . . ) +  72A1°B3+ . . . .  (7) 
It is then a simple matter to expand x as a power series in U, using the expressions 

(5). We obtain 

x = 1 +6u+3Ou2+ 1 3 8 ~ ~ + 6 1 8 ~ ~ + 2 7 6 6 ~ ~ + 1 2 3 7 8 ~ ~ + 5 5 2 1 8 ~ ~ + 2 4 5 0 1 0 ~ ~  

+ 1081158~~+4752054u'~ +20842578u1' +91307598vl2 +399546882u13 

+ 1745963826~'~ + 76189907700'~ + 33208413570~'~ + . . . . (8)  
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The terms up to and including u l 0  agree exactly with the published series of Lambeth 
et a1 (1974) and confirm a small error in the tenth term of Betts and Ditzian (1968). The 
last six coefficients are new. Although it is possible that these coefficients may contain 
small errors we have taken considerable care to ensure that they are correct, re-checking 
our calculations several times. In 8 3  we will analyse the series (8) by standard tech- 
niques and obtain estimates for the critical temperature U, and exponent 7 .  

3. Series analysis and results 

There are two standard methods for the analysis of series expansions such as (8), namely : 
(i) the ratio method and variations; 

(ii) the Pade approximant method; 
and we shall use both these techniques to obtain estimates for the critical parameters U, 

and y for the tetrahedron lattice. Excellent reviews of these methods are available 
(Hunter and Baker 1973, Gaunt and Guttmann 1974). 

All of the analysis methods assume a particular asymptotic form for the function of 
interest near the singularity. For the zero-field susceptibility the dominant term is 
believed to be 

x - A(l - u / u c ) - y ,  t' + c, , (9) 

although more complex forms involving weaker confluent singularities have also been 
used (Sykes et al 1972, Saul er a1 1975). 

The ratio method is based on the fact that for a function of the form (9) the ratios 
pn of successive coefficients of the power series expansion are given by 

( 'il (n'))  
a n  

un- 1 
p n -  = - = p c  I + - + 0 ,  

where p, = 1,'~~. Thus a direct plot of p,t against l /n  should become linear for large n, 
with intercept pc and slope ( y  - l)pc.  More accurate estimates of U, can be obtained from 
the quantities 

Plots of and pi against l / n  should approach the intercept p, with zero slope. In 
figure 5 we show such plots and it can be seen that the points do appear to be approach- 
ing a horizontal line although there is a regular oscillatory behaviour indicative of the 
presence of other singularities near the circle of convergence. The oscillatory behaviour 
appears to be decreasing in a regular way and we estimate from the diagram that 

p, = 4.292 0.005 

or 

U, = 0.2330+0*0003. 
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4,292 

1/4 1 i 5  1j6 ' 118 1/10 1/16 

I In 

Figure 5. Ratio plots of p; (broken curve), p i  (full curve) against l/n (equation (1 1)). The 
horizontal broken line and the error bar yield the estimates given by equation (12). 

Having obtained an estimate of p c  we compute the quantities 

y n  = l + n ( t - l )  

which from (10) should behave like 

Y n  = Y( I + . ( ; ) )  

so that a plot of yn against l / n  should yield an estimate for y .  This is shown in figure 6, 
from which we obtain 

y = 1.250 & 0.003, (1 5 )  
a result which is consistent with the 'universality' prediction that y = $ for all three- 
dimensional lattices. The uncertainty in ( 1 5 )  is due both to the oscillatory behaviour 
of y n  in figure 6 and the uncertainty in the estimate for U,, as indicated in figure 5 .  

Assuming that y = a exactly we compute the quantities 

which should behave as 

8" = P c (  l + O ( $ ) ) .  

A plot of 8, against l / n  should approach the limit p c  with zero slope. In fact it is usual to 
plot p, against n to spread out the points somewhat. This is shown in figure 7 and 
clearly is approaching a horizontal line. The resulting estimate of p c  is quite consistent 
with (12) but allows the confidence limits to be narrowed considerably. Our estimate 
from figure 7 is 
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Iln 

Figure 6. Ratio plot of y. against l /n (equation (14)). The horizontal broben line and the 
error bar yield the estimate given by equation (15). 

43800- 

4 3000 ai 

4 2 2 0 0  I 
l : , h " : : : : ' : : . : *  

n 
14 10 2 6 

Figure 7. Plot of /3, against n (equation (16)). The horizontal broken line yields the refined 
estimates (equation (18)) for the critical temperature. 

p c  = 4.291 7 & 0.0005 

or (1 8) 
t', = 0.23301 0.00003. 

The Pade approximant method attempts to represent the function as the quotient 
of two finite polynomials. The singularities ofthe function are then estimated by comput- 
ing the zeros of the denominator polynomial. 

The usual approach is to compute the series for the logarithmic derivative of x, 
d -Y 
dv t' - v, 
-In ~ ( v )  2: - 
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as this function has a simple pole at U = c, and should be well represented by Pade 
approximants. In table 2 we show estimates of U, obtained in this way. The convergence 
is extremely good and from the elements near to and on the diagonal we estimate 

(20) U, = 0.23300 k 0.00005. 

Table 2. Estimates of the critical point v,, of the tetrahedral lattice obtained from Pade 
approximants to (d/do) In ~(0). 

6 7 8 9 10 
- 

5 0.232451 0.233299 0.233047 0.233030 0.232984 0,233005 
6 0,23291 1 0.233103 0.233029 0,233058 0.232997 
7 0.233184 0.233061 0.232899 0.232993 
8 0,2331 16 0.233015 0.233009 
9 0.232859 0.233009 
10 0.232927 

The residues in (19), evaluated at the estimated U, values, yield the estimate 

‘J = 1.250 f 0.003. (21) 
This result again confirms the hypothesis that y = 2 exactly. We then construct the 

series 

Forming Pade approximants to the series we obtain the results shown in table 3, from 
which we estimate 

(23) t’, = 0.23300 i: 0.00001, 

a value identical with (20) but with much reduced error estimates. 
The exponent y is then re-estimated from the approximants to 

d 
(U, - U)- In X(U) 

dc 

Table 3. Estimates of the critical point o,, of the tetrahedral lattice obtained from Pade 
approximants to (~(0))~’~. 

6 7 8 9 10 11 

5 0.2330532 0,2329667 0.2332992 0.2329978 0.2329989 0.2329986 0,2329991 
6 0.2330022 0.2329862 0.2329987 0.2329992 0.2329987 0.2329988 
7 0,2329873 0.232991 3 0.2329992 0.2329989 0.2329989 
8 0,2329939 0,2330056 0,2329985 0.2329989 
9 0,2329960 0.2329992 0.232999 I 
10 0.2329987 0.2329991 
11 0.2329985 
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evaluated at U = u ~ ,  Using the estimates of U, in (23) we obtain the results in table 4 from 
which we conclude 

y = 1.250f0.001. (25) 

In carrying out the Pade approximant analysis of the logarithmic derivative series 
(19) we noted the consistent occurrence of a number of other non-physical singularities. 
The approximate positions of these are shown in figure 8. We note that: 

(i) all of the non-physical singularities lie outside the circle of convergence; 

Table 4. Estimates of the critical exponent y of the tetrahedral lattice obtained from Pade 
approximants to (U, - u)(d/du) In ~ ( u )  evaluated at U = U,. 

0.23299 0.23300 0.23301 

5, 10 
6 ,  9 
7, 8 
8,  7 
9, 6 
10, 5 
5, 9 
6, 8 
7, 7 
8, 6 
9, 5 

1.2492 
1.2494 
1.249 1 
1.2494 
1.2494 
1.2494 
1,2487 
1.2495 
1.2494 
1.2494 
1.2494 

1,2498 
1.2501 
1.2501 
1.2501 
1.2501 
1.2501 
1.2493 
1.2502 
1,2502 
1.2501 
1.250 1 

1,2504 
1,2509 
1.2509 
1.2509 
1,2508 
1.2509 
1.2499 
1.2509 
1.2508 
1,2507 
1.2508 

Re v 

B D  I Eo:\ ' + . B  

\ / . C' 
- A  t /' \ 

' K O  2 

Singularity 

B. B '  
c. C' 
D, D' 
E, E' 
F, F' 

A 
Location 
0 23300 

0 16+0 281 
0 4 1 k 0 1 6 1  
0 0 6 k 0 4 5 1  

- 0  04+0 451 
- 0  58+0 171 

I 
Figure 8. Distribution of singularities in the complex U plane obtained from Pade approxi- 
mants to the series for (d/du) In ~ ( u ) .  
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(ii) there is no singularity on the negative real axis, corresponding to the impossi- 
bility of having a stable antiferromagnetic ordered state in this structure. 

The oscillatory behaviour of the ratios in figure 5 can probably be attributed mainly 
to the singularities B, B* which are quite close to the circle of convergence. We have 
attempted to improve the rate of convergence of the ratio results by applying a con- 
formal transformation of the form 

U 
U =  

1 - ii2/b2 

(Betts et a1 1971) which has the effect of isolating the physical singularity from other 
singularities. Although the transformed series does indeed show much smaller oscilla- 
tions in the ratios the overall estimates of U, tend to differ slightly from the original 
series. The need to use transformations with caution has been noted previously by 
Lambeth et al (1974). 

4. Discussion and conclusions 

In this paper we have generalized a transformation technique due to Gibberd (1970) 
and have used this to obtain a 16-term series for the high-temperature susceptibility 
for the spin 4 nearest-neighbour Ising model on a regular three-dimensional lattice 
which we have called the ‘tetrahedron’ lattice. We were motivated to carry out this 
work for a number of reasons. 

The tetrahedron lattice is not just an artificial construct-it is the lattice made up 
of the B sites of the crystobalite (AB,) structure and also the B sites of the spinel structure 
(AB,X,). There are a number of important insulating ferromagnets and antiferro- 
magnets with the spinel structure in which the magnetic ions occupy the B sites (Dwight 
and Menyuk 1967, 1968). 

There are also a number of strong theoretical motivations for this work. According 
to the universality hypothesis the critical exponents of the Ising model should be the 
same for all three-dimensional lattices, independent of the particular lattice structure. 
Evidence from series expansions certainly supports this result. However for the tetra- 
hedron lattice Lambeth et a1 (1974) found that their 10-term series was too irregular 
to conclude anything definite. With our longer series we are able to remove this doubt 
and to conclude that the exponent y for this lattice is almost certainly 1.25, as predicted 
by universality. 

Transformation techniques have been widely used in studies of the Ising model (an 
early discussion was given by Fisher 1959). Gibberd’s transformation technique has 
the effect of transforming from an Ising model with pair interactions on a lattice made 
up of touching polyhedra to an Ising model with pair and more complex interactions on 
a lattice made up by the centres of the polyhedra (the dual lattice). The original tech- 
nique was only applicable to the zero-field free energy. We have generalized the method 
to apply it to a calculation of the zero-field susceptibility. Apart from the present work 
it would be simple to use our method to calculate extended susceptibility expansions for 
other lattices, such as the ‘octahedral’ lattice studied by Oitmaa and Elliott (1970). 

An obvious extension of our work is to include a four-spin interaction term in the 
original Hamiltonian, coupling the four spins at the vertices of each tetrahedron. There 
has been considerable interest in recent years in the effect of multiple spin interactions 
in the king model (Baxter 1971, Wu 1971, Oitmaa and Gibberd 1973, Wood and 
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Griffiths 1974, Baxter and Wu 1973). We have carried out calculations for the Ising 
model with two- and four-spin interactions in the tetrahedron lattice and the results 
will be presented in a subsequent paper. 

Appendix 

In enumerating the dual graphs, as discussed in 0 2, it is useful to classify them into dif- 
ferent topological types. We list these below, together with the weights. In all cases n 
denotes the number of bonds in a graph and second-order vertices of the type -e-- 
are suppressed. 

Graphs proportional to A‘ ( I  < 16) 

0 - Lo 01 
6A 9An+’ 6A” +’ 

[O -1 
9A“ +’ 

Loo -1 
9A” +‘ 

LO c3 
- ( n  + 1 )An+’ 

Graphs proportional to A‘B 

0 
nAn-’ B 

nAn-’ B 

9A” -’ B 

9A”-’ B 

0 
- (n  + l ) A n + ‘  

3A”-lB 

6A”- ’B 

(33 
- (n  + 1 p - ’ B  
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Graphs proportional to A‘B’ ( r  < 12) 

@ e -  
A”-3B2 3A”-3B2 

G 
- ( n  + 1 )An-3B2 

Graphs proportional to ArB3 ( r  < 10) 
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